Structure of Neuronal Correlation: Distance, Dynamics and Depth

Matthew A Smith

Department of Ophthalmology & Center for the Neural Basis of Cognition
University of Pittsburgh
Acknowledgements

• Adam Kohn } AECOM
• Ryan Kelly }
• Tai Sing Lee }
• Marc Sommer }
} Carnegie Mellon
} Duke University
Zohary, Shadlen & Newsome (1994)

Averbeck, Latham & Pouget (2006)
Structure of neuronal correlation
Structure of neuronal correlation

• Distance
Structure of neuronal correlation

• Distance
 • Spatial extent
 • Tuning similarity
Structure of neuronal correlation

• Distance
 - Spatial extent
 - Tuning similarity

• Dynamics
Structure of neuronal correlation

• Distance
 Spatial extent
 Tuning similarity

• Dynamics
 Spontaneous vs Evoked
 Transition between states
Structure of neuronal correlation

- **Distance**
 - Spatial extent
 - Tuning similarity

- **Dynamics**
 - Spontaneous vs Evoked
 - Transition between states

- **Depth**
Structure of neuronal correlation

- **Distance**
 - Spatial extent
 - Tuning similarity

- **Dynamics**
 - Spontaneous vs Evoked
 - Transition between states

- **Depth**
 - Laminar variation
 - Correlation outside V1
Structure of neuronal correlation

• **Distance**
 - Spatial extent
 - Tuning similarity

• **Dynamics**
 - Spontaneous vs Evoked
 - Transition between states

• **Depth**
 - Laminar variation
 - Correlation outside V1
Structure of neuronal correlation

• **Distance**
 - Spatial extent
 - Tuning similarity

• **Dynamics**
 - Spontaneous vs Evoked
 - Transition between states

• **Depth**
 - Laminar variation
 - Correlation outside V1
Methods

- Anesthetized macaque monkeys
- V1 array implants
- Stimulus with compromise parameters
Spatial scale of functional connections

Slow timescale

$r_{sc} = 0.30$

Response cell 1 (Z-score)

Response cell 2 (Z-score)
Spatial scale of functional connections

Slow timescale

Smith & Kohn (2008)
Spatial scale of functional connections

Slow timescale

Spike count correlation (r_{sc})

Distance between electrodes (mm)

Percentage of pairs

$n=4490$

Smith & Kohn (2008)
Spatial scale of functional connections

Fast timescale

Smith & Kohn (2008)
Spatial scale of functional connections

Fast timescale

Area under CCG peak (+/- 10ms)

Distance between electrodes (mm)

n=4490

Smith & Kohn (2008)
Spatial scale of functional connections

Area under CCG peak (+/- 10ms)

Distance between electrodes (mm)

Spike count correlation (r_{sc})

Distance between electrodes (mm)

Smith & Kohn (2008)
What about distances > 4 mm?

Smith & Kohn (2008)
What about distances > 4 mm?
What about distances > 4 mm?

Thomas recording
7-electrode microdrive

4 mm
Spatial scale of functional connections

Slow timescale (long distance)

Smith & Kohn (2008)
Dependence on tuning similarity (r_{signal})

$r_{\text{signal}} \approx 1.0$

(range from -1 to 1)
Dependence on tuning similarity (r_{signal})

≈ -1.0 (range from -1 to 1)
Dependence on tuning similarity (r_{signal})

Normalized response

Orientation (degrees)

$\begin{align*}
 r_{\text{signal}} & \approx 0.2 \\
 \text{(range from -1 to 1)}
\end{align*}$
Dependence on tuning similarity (r_{signal})

Slow timescale

- Distance between electrodes (mm)
- Orientation tuning similarity (R_{signal})
- Spike count correlation (r_{sc})

Fast timescale

- Distance between electrodes (mm)
- Orientation tuning similarity (R_{signal})
- Area under CCG peak (+/- 10ms)

Smith & Kohn (2008)
Does this structure extend outside V1?
Does this structure extend outside V1?

- Awake animals
- V4 array implant
- Fixation task
- Same stimulus

Smith & Sommer (2010, SfN Abstract)
Spatial scale of functional connections

Slow timescale

Distance (mm)

ρ_{sc}

Monkey 1

Monkey 2

Smith & Sommer (2010, SfN Abstract)
Dependence on tuning similarity (r_{signal})

Slow timescale

- **Monkey 1** (red line)
- **Monkey 2** (black line)

The graph shows the dependence of tuning similarity (r_{signal}) on r_{signal} with data points and error bars for both monkeys. The x-axis represents r_{signal} ranging from -1 to 1, while the y-axis shows the value of r_{sc}. The trend suggests a positive correlation between tuning similarity and r_{signal}.
Spike count correlation

Smith & Sommer (2010, SfN Abstract)
Spike count correlation

Synchrony

Distance (mm)

Spike count correlation

Synchrony

Smith & Sommer (2010, SfN Abstract)
Structure of neuronal correlation

• Distance

• Dynamics
 Spontaneous vs Evoked
 Transition between states

• Depth
 Laminar variation
 Correlation outside V1
Structure of neuronal correlation

• Distance
 - r_{sc} extends over long distances; synchrony only short range

• Dynamics
 - Spontaneous vs Evoked
 - Transition between states

• Depth
 - Laminar variation
 - Correlation outside V1
Structure of neuronal correlation

• Distance
 • r_{sc} extends over long distances; synchrony only short range
 • at all distances, correlation higher with similar orientation preference

• Dynamics
 Spontaneous vs Evoked
 Transition between states

• Depth
 Laminar variation
 Correlation outside V1
Structure of neuronal correlation

• **Distance**
 - r_{sc} extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• **Dynamics**
 Spontaneous vs Evoked
 Transition between states

• **Depth**
 Laminar variation
 Correlation outside V1
Proportion of pairs

Spike count correlation (r_{sc})

Evoked

$n = 4488$
7 implants

0.18

Smith & Kohn (2008)
Proportion of pairs

Spike count correlation (r_{sc})

Evoked
- $n = 4488$
- 7 implants
- $r_{sc} = 0.18$

Spontaneous
- $n = 2738$
- 6 implants
- $r_{sc} = 0.31$

Smith & Kohn (2008)
Proportion of pairs

Spike count correlation (r_{sc})

Evoked

- $n = 4488$
- 7 implants
- 0.18

Spontaneous

- $n = 2738$
- 6 implants
- 0.31
Proportion of pairs

Spike count correlation (r_{sc})

Evoked

1.28 s 1.5 s 1.28 s

Spontaneous

n = 4488 7 implants

n = 2738 6 implants

Spike count correlation (r_{sc})
Proportion of pairs

Spike count correlation (r_{sc})

Evoked

- $n = 4488$
- 7 implants

Spontaneous

- $n = 2738$
- 6 implants

Evoked

- 1.28 s
- 1.5 s
- 1.28 s

Spontaneous

- many seconds
- 1.28 s

Histograms show the proportion of pairs with different spike count correlations (r_{sc}) for evoked and spontaneous conditions.
Transition from evoked to spontaneous
Transition from evoked to spontaneous
Transition from evoked to spontaneous

1.28 s

10 s

1.28 s

100 ms

100 ms

100 ms
Transition from evoked to spontaneous

1.28 s

10 s

1.28 s

100 ms

100 ms

100 ms
Transition from evoked to spontaneous
n = 3367
3 implants
Time (seconds)

Firing rate (sp/s)

n = 3367
3 implants
Firing rate (sp/s)

Time (seconds)

n = 3367
3 implants
n = 3367
3 implants
n = 3367
3 implants
Structure of neuronal correlation

• Distance
 • \(r_{sc} \) extends over long distances; synchrony only short range
 • at all distances, correlation higher with similar orientation preference

• Dynamics

• Depth
 Laminar variation
 Correlation outside V1
Structure of neuronal correlation

• **Distance**
 - r_{sc} extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• **Dynamics**
 - correlation is higher in spontaneous activity than evoked

• **Depth**
 - Laminar variation
 - Correlation outside V1
Structure of neuronal correlation

• Distance
 - \(r_{sc} \) extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• Dynamics
 - correlation is higher in spontaneous activity than evoked
 - sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

• Depth
 Laminar variation
 Correlation outside V1
Structure of neuronal correlation

• **Distance**
 - r_{sc} extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• **Dynamics**
 - correlation is higher in spontaneous activity than evoked
 - sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

• **Depth**
 - Laminar variation
 - Correlation outside V1
Dorsal

Anterior

Smith & Kohn (2009, SfN Abstract)
Figure 13: Nissl stain of the visual cortex reveals the different layers I through VI quite clearly.
Figure 13. Nissl stain of the visual cortex reveals the different layers I through VI quite clearly.
Figure 13: Nissl stain of the visual cortex reveals the different layers I through VI quite clearly.
Figure 13. Nissl stain of the visual cortex reveals the different layers I through VI quite clearly.
Figure 13. Nissl stain of the visual cortex reveals the different layers I through VI quite clearly.
Figure 13: Nissl stain of the visual cortex reveals the different layers I through VI quite clearly.
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.05
0.10
0.15
0.20
0.25

Depth from first recorded spikes (mm)

Spike count correlation (r_{sc})
Current Source Density

Smith & Kohn (2009, SfN Abstract)
Current Source Density

Smith & Kohn (2009, SfN Abstract)
Current Source Density

Depth

Source

Sink

Time (ms)

Depth (μm)

-1200
-800
-400
0
400
800

Spike count correlation (r_{sc})

0 0.1 0.2

Average of 4 penetrations

Smith & Kohn (2009, SfN Abstract)
Depth (μm)

Frequency (Hz)

Smith & Kohn (2009, SfN Abstract)
Smith & Kohn (2009, SfN Abstract)
Are the input layers of V1 special?
V1-V2 CCGs

Recording depth (spacing of ~200 μm)

200 ms

0.1 %

Smith & Kohn (2009, SfN Abstract)
V1-V2 CCGs

Recording depth (spacing of ~200)

Example penetration

Spike count correlation (r_{sc})

Smith & Kohn (2009, SfN Abstract)
Proportion of cases with sharp peaks in V1–V2 CCGs: 0.17 ± 0.01

Proportion of cases without sharp peaks in V1–V2 CCGs: 0.19 ± 0.01

Smith & Kohn (2009, SfN Abstract)
Proportion of cases

Spike count correlation (r_{sc})

Input layers

Layers with sharp peaks in V1–V2 CCGs

$n = 6727$

0.17 ± 0.01

Not input layers

Layers without sharp peaks in V1–V2 CCGs

$n = 2296$

0.19 ± 0.01

Smith & Kohn (2009, SfN Abstract)
Structure of neuronal correlation

• **Distance**
 - r_{sc} extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• **Dynamics**
 - correlation is higher in spontaneous activity than evoked
 - sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

• **Depth**
Structure of neuronal correlation

• **Distance**
 - r_{sc} extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• **Dynamics**
 - correlation is higher in spontaneous activity than evoked
 - sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

• **Depth**
 - Correlation high in superficial & deep layers, near zero in input layers
Structure of neuronal correlation

• **Distance**
 - r_{sc} extends over long distances; synchrony only short range
 - at all distances, correlation higher with similar orientation preference

• **Dynamics**
 - correlation is higher in spontaneous activity than evoked
 - sharply reduced at stimulus onset, returns slowly to higher levels at stimulus offset

• **Depth**
 - Correlation high in superficial & deep layers, near zero in input layers
 - No evidence for such drastic layer differences in V2
Conclusions

• Correlation has different properties on different time scales
• Correlation depends on network state (spont vs. evoked)
• Correlation varies dramatically with layer in V1, but not V2
• Some principles of correlation are common across visual cortex

Funding

• Adam Kohn (NIH EY016774)
• Matt Smith (NIH EY018894)
Zohary, Shadlen & Newsome (1994)

Averbeck, Latham & Pouget (2006)